在图像处理中,如果图像中存在光照不均匀,则会影响图像处理的效果,比如在图像文本识别和图像分割中。本博客对于图像均衡化的处理主要参考文章:一种基于亮度均衡的图像阈值分割技术,以有关于C++的实现代码:opencv 一种不均匀光照的补偿方法
使用该方法主要的原因是最近在弄Tesseract
的文字识别,需要识别拍摄照片中的字母,但是照片为室外拍摄,具有不同的光照影响,导致识别率很低,因此采用该方法进行处理,最后有效的提升了识别率,实现有光照影响的Tesseract
文字识别。
全部代码如下:
import cv2 import numpy as np def unevenLightCompensate(img, blockSize): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) average = np.mean(gray) rows_new = int(np.ceil(gray.shape[0] / blockSize)) cols_new = int(np.ceil(gray.shape[1] / blockSize)) blockImage = np.zeros((rows_new, cols_new), dtype=np.float32) for r in range(rows_new): for c in range(cols_new): rowmin = r * blockSize rowmax = (r + 1) * blockSize if (rowmax > gray.shape[0]): rowmax = gray.shape[0] colmin = c * blockSize colmax = (c + 1) * blockSize if (colmax > gray.shape[1]): colmax = gray.shape[1] imageROI = gray[rowmin:rowmax, colmin:colmax] temaver = np.mean(imageROI) blockImage[r, c] = temaver blockImage = blockImage - average blockImage2 = cv2.resize(blockImage, (gray.shape[1], gray.shape[0]), interpolation=cv2.INTER_CUBIC) gray2 = gray.astype(np.float32) dst = gray2 - blockImage2 dst = dst.astype(np.uint8) dst = cv2.GaussianBlur(dst, (3, 3), 0) dst = cv2.cvtColor(dst, cv2.COLOR_GRAY2BGR) return dst if __name__ == '__main__': file = 'refined_receipt.jpg' blockSize = 16 img = cv2.imread(file) dst = unevenLightCompensate(img, blockSize) result = np.concatenate([img, dst], axis=1) cv2.imshow('result', result) cv2.waitKey(0)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
效果如下所示:
调节的参数有blockSize
的尺寸,以及最后的高斯去噪GaussianBlur
和其核的大小,本文取的3
.
没有评论:
发表评论